首页> 外文OA文献 >Low-dimensional dynamics embedded in a plane Poiseuille flow turbulence : Traveling-wave solution is a saddle point ?
【2h】

Low-dimensional dynamics embedded in a plane Poiseuille flow turbulence : Traveling-wave solution is a saddle point ?

机译:低维动力学嵌入平面poiseuille流动湍流   :行波解决方案是一个鞍点?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The instability of a streak and its nonlinear evolution are investigated bydirect numerical simulation (DNS) for plane Poiseuille flow at Re=3000. It issuggested that there exists a traveling-wave solution (TWS). The TWS islocalized around one of the two walls and notably resemble to the coherentstructures observed in experiments and DNS so far. The phase space structurearound this TWS is similar to a saddle point. Since the stable manifold of thisTWS is extended close to the quasi two dimensional (Q2D) energy axis, theapproaching process toward the TWS along the stable manifold is approximatelydescribed as the instability of the streak (Q2D flow) and the succeedingnonlinear evolution. Bursting corresponds to the escape from the TWS along theunstable manifold. These manifolds constitute part of basin boundary of theturbulent state.
机译:通过直接数值模拟(DNS)研究Re = 3000处平面Poiseuille流的条纹的不稳定性及其非线性演化。建议存在行波解决方案(TWS)。 TWS定位在两个壁之一周围,并且非常类似于到目前为止在实验和DNS中观察到的相干结构。该TWS周围的相空间结构类似于鞍点。由于该TWS的稳定歧管延伸至接近二维(Q2D)能量轴,因此沿着该稳定歧管向TWS的逼近过程大致描述为条纹(Q2D流动)的不稳定性和后续的非线性演化。爆裂对应于沿着不稳定歧管从TWS逃逸。这些歧管构成了湍流盆地边界的一部分。

著录项

  • 作者

    Toh, Sadayoshi; Itano, Tomoaki;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号